RNA-polymerase I, Upstream binding transcription factor OKDB#: 1160
 Symbols: UBF Species: human
 Synonyms: UPSTREAM BINDING FACTOR,  Locus: 17q21.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser    GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Upstream binding factor (UBF) is a transcription factor required for expression of the 18S, 5.8S, and 28S ribosomal RNAs, along with SL1 (a complex of TBP ) and multiple TBP-associated factors or 'TAFs'). Two UBF polypeptides, of 94 and 97 kD, exist in the human. UBF is a nucleolar phosphoprotein with both DNA binding and transactivation domains

NCBI Summary: Nucleolar transcription factor; implicated in the regulation of rRNA expression
General function Nucleic acid binding, DNA binding, Transcription factor
Comment
Cellular localization Nuclear
Comment
Ovarian function Oogenesis
Comment Trudee Fair et al 2001 reported the immunolocalization of Nucleolar Proteins During Bovine Oocyte Growth, Meiotic Maturation, and Fertilization. During the growth phase of the bovine oocyte transcripts, polypeptides and ribosomes are accumulated in the oocyte to drive and sustain future meiotic maturation, fertilization, and early embryonic development. The oocyte also furnishes the early embryo with the components required to establish a functional transcriptionally active nucleolus at the time of maternal embryonic transition. The temporal localization of nucleolar proteins fibrillarin, nucleophosmin, nucleolin, RNA polymerase I (RNA pol I), upstream binding factor (UBF), and coilin 5P10 was investigated in growing and fully grown immature bovine oocytes during in vitro maturation and during the first postfertilization cell cycle using whole-mount immunocytochemistry and confocal microscopy. During the oocyte growth phase, fibrillarin, nucleophosmin, nucleolin, RNA pol I, and UBF were localized to the oocyte nucleolus. On completion of the growth phase, nucleolin and nucleophosmin appeared to migrate to the periphery of the nucleolus and into the nucleoplasm, and the proportion of oocytes displaying RNA pol I localization had decreased. Fibrillarin appeared to be localized to large foci within the nucleolus and/or nucleoplasm. Nucleophosmin and nucleolin labeling was characterized by a homogenous signal over the nucleolus. RNA pol I and UBF were characterized by the localization of the antibodies to individual or clustered foci in the nucleolus and/or nucleoplasm. Following oocyte nucleus breakdown (ONBD), the proteins appeared to disperse into the cytoplasm.
Expression regulated by
Comment xyz
Ovarian localization Oocyte
Comment Bjerregaard B, et al reported the Regulation of Ribosomal RNA Synthesis During the Final Phases of Porcine Oocyte Growth. In porcine oocytes acquisition of meiotic competence coincides with a decrease of general tran-scriptional activity at the end of the oocyte growth phase and, specifically, of ribosomal RNA (rRNA) synthesis in the nucleolus. The present study investigated the regulation of rRNA synthesis during porcine oocyte growth. Localization and expression of components involved in regulation of the rRNA synthesis, (the RNA polymerase I-associated factor PAF53, upstream binding factor (UBF), and the pocket proteins p130 and pRb) were assessed by immunocytochemistry and semi-quantitative RT-PCR, and correlated with ultrastructural analysis and autoradiography following (3)H-uridine incubation in growing and fully grown porcine oocytes. In addition, meiotic resumption, ultrastructure, and expression of p130, UBF and PAF53 were analyzed in growing and fully grown porcine oocytes cultured with 100 micro M butyrolactone I (BL-I), a potent inhibitor of cyclin dependent kinases (cdk), to gain insight into the regulation of rRNA transcription during meiotic arrest. Immunocytochemical analysis demonstrated that p130 became co-localized with UBF and PAF53, and that the intensity of the PAF53 labeling decreased towards the end of the oocyte growth phase. These data suggest that the decrease in rRNA synthesis is regulated by inhibition of UBF by p130 as well as by decreased availability of PAF53. Moreover, expression of mRNA encoding PAF53 was decreased at the end of the oocyte growth phase. At the morphological level these events coin-cided with inactivation of the nucleolus as visualized by the transformation of the fibrillo-granular nucleolus to an electron-dense fibrillar sphere with remnants of the fibrillar centers at the surface. Meiotic inhibition with 100 micro M BL-I had a detrimental effect on the ability of porcine oocytes to resume meiosis, and on nucleolus morphology resulting in lack of RNA synthetic capability as the fibrillar components, where rRNA transcription and initial processing occur, condensed or even disintegrated.
Follicle stages
Comment
Phenotypes
Mutations
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody
Discuss..
blog comments powered by Disqus
Related Genes
Beta
Show data ...


created: 2001-05-04 13:53:32 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu
home page: http://reprobio.stanford.edu/hsueh
last update: 2010-02-23 17:06:29 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form