Carnitine Palmitoyltransferase I, Liver OKDB#: 2937
 Symbols: CPT1A Species: human
 Synonyms: CPT1, CPT1-L, L-CPT1,CPT IA|CPT I, LIVER|CPT1  Locus: 11q13.1-q13.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser    GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment

NCBI Summary: The mitochondrial oxidation of long-chain fatty acids is initiated by the sequential action of carnitine palmitoyltransferase I (which is located in the outer membrane and is detergent-labile) and carnitine palmitoyltransferase II (which is located in the inner membrane and is detergent-stable), together with a carnitine-acylcarnitine translocase. CPT I is the key enzyme in the carnitine-dependent transport across the mitochondrial inner membrane and its deficiency results in a decreased rate of fatty acid beta-oxidation.
General function Metabolism
Comment
Cellular localization Mitochondrial
Comment
Ovarian function Oocyte maturation
Comment Changes in gene expression involved in energy utilization during chicken follicle development Seol HS, et al . Ovarian follicle development in egg-laying species is characterized by rapid growth in 7 days prior to ovulation when DNA and protein synthesis is markedly increased in the granulosa and theca cells. However, energy and substrate sources to facilitate the extensive DNA and protein synthesis necessary for folliculogenesis have not been identified in avian species. The current study was undertaken to investigate the expression profiles of regulatory genes involved in glucose transport, glycolysis and fatty acid oxidation in the follicle membranes from the small white follicle (SWF) to follicle 1 (F1) stages of follicle development. In our analysis of glucose transporter (GLUT) isoform expression, the level of GLUT1 mRNA increased with follicle development while GLUT2, GLUT3 and GLUT8 mRNA levels were unaffected by follicle development. In contrast, the expression patterns of proteins involved in metabolism down-stream of glucose transport, including hexokinase (HK), pyruvate dehydrogenase E1alpha (PDH E1alpha) and citrate synthase (CS), did not vary with the developmental stage of the follicle, even during rapid follicle growth. Expression of genes related to beta-oxidation of fatty acids (carnitine palmityl CoA transferase I and II, l-3-hydroxyacyl CoA dehydrogenase and long-chain acyl-CoA dehydrogenase), for which expression in the ovarian follicles of mammalian species has not previously been studied, was not changed consistently with the follicle development. These results suggest that both glucose and fatty acids might work as energy sources to ensure rapid follicle development in the chicken ovary, even though glycolysis and beta-oxidation are not modulated by follicle development.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Fatty acid oxidation and meiotic resumption in mouse oocytes. Downs SM et al. We have examined the potential role of fatty acid oxidation (FAO) in AMP-activated protein kinase (AMPK)-induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase-1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP-arrested cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75-induced maturation but was ineffective in cerulenin-treated oocytes, suggesting that the meiosis-inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 2009. (c) 2009 Wiley-Liss, Inc.
Follicle stages
Comment
Phenotypes
Mutations
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody
Discuss..
blog comments powered by Disqus
Related Genes
Beta
Show data ...


created: 2005-11-02 11:35:58 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu
home page: http://reprobio.stanford.edu/hsueh
last update: 2009-05-27 09:08:48 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form