SEC62 homolog (S. cerevisiae) OKDB#: 3783
 Symbols: SEC62 Species: human
 Synonyms: HTP1, TP-1, Dtrp1, TLOC1,CTCFL, BORIS,  Locus: 3q26.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser    GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment

NCBI Summary: The Sec61 complex is the central component of the protein translocation apparatus of the endoplasmic reticulum (ER) membrane. The protein encoded by this gene and SEC63 protein are found to be associated with ribosome-free SEC61 complex. It is speculated that Sec61-Sec62-Sec63 may perform post-translational protein translocation into the ER. The Sec61-Sec62-Sec63 complex might also perform the backward transport of ER proteins that are subject to the ubiquitin-proteasome-dependent degradation pathway. The encoded protein is an integral membrane protein located in the rough ER. [provided by RefSeq, Jul 2008]
General function
Comment
Cellular localization Other Membrane, Nuclear
Comment ER
Ovarian function Oocyte growth
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Meiotic HORMA domain proteins prevent untimely centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Schvarzstein M et al. In many species where oocytes lack centrosomes, sperm contribute both genetic material and centriole(s) to the zygote. Correct centriole organization during male meiosis is critical to guarantee a normal bipolar mitotic spindle in the zygote. During Caenorhabditis elegans male meiosis, centrioles normally undergo two rounds of duplication, resulting in haploid sperm each containing a single tightly engaged centriole pair. Here we identify an unanticipated role for C. elegans HORMA (Hop1/Rev7/Mad2) domain proteins HTP-1/2 and HIM-3 in regulating centriole disengagement during spermatocyte meiosis. In him-3 and htp-1 htp-2 mutants, centrioles separate inappropriately during meiosis II, resulting in spermatids with disengaged centrioles. Moreover, extra centrosomes are detected in a subset of zygotes. Together, these data implicate HIM-3 and HTP-1/2 in preventing centriole disengagement during meiosis II. We showed previously that HTP-1/2 prevents premature loss of sister chromatid cohesion during the meiotic divisions by inhibiting removal of meiotic cohesin complexes containing the REC-8 subunit. Worms lacking REC-8, or expressing a mutant separase protein with elevated local concentration at centrosomes and in sperm, likewise exhibit inappropriate centriole separation during spermatocyte meiosis. These observations are consistent with HIM-3 and HTP-1/2 preventing centriole disengagement by inhibiting separase-dependent cohesin removal. Our data suggest that the same specialized meiotic mechanisms that function to prevent premature release of sister chromatid cohesion during meiosis I in C. elegans also function to inhibit centriole separation at meiosis II, thereby ensuring that the zygote inherits the appropriate complement of chromosomes and centrioles.
Follicle stages
Comment
Phenotypes
Mutations
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody
Discuss..
blog comments powered by Disqus
Related Genes
Beta
Show data ...


created: 2008-05-14 13:20:49 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu
home page: http://reprobio.stanford.edu/hsueh
last update: 2013-02-13 14:53:23 by: Aaron J Hsueh, hsuehlab   email: aaron.hsueh@stanford.edu



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form